Monday 9 October 2017

PHOSPHATE


Phosphorus (pronounced /ˈfɒsfərəs/, FOS-fər-əs) is the chemical element that has the symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus is commonly found in inorganic phosphate rocks. Elemental phosphorus exists in two major forms – white phosphorus and red phosphorus. Although the term "phosphorescence", meaning glow after illumination, derives from phosphorus, glow of phosphorus originates from oxidation of the white (but not red) phosphorus and should be called chemiluminescence.

Detailed description


phosphate, an inorganic chemical, is a salt of phosphoric acid. In organic chemistry, a phosphate, or organophosphate, is an ester of phosphoric acid. Organic phosphates are important in biochemistry and biogeochemistry or ecology. Inorganic phosphates are mined to obtain phosphorus for use in agriculture and industry.[1][2][3] At elevated temperatures in the solid state, phosphates can condense to form pyrophosphates.

Chemical properties
The phosphate ion is a polyatomic ion with the empirical formula PO3−4 and a molar mass of 94.973 g/mol. It consists of one central phosphorus atom surrounded by four oxygen atoms in a tetrahedral arrangement. The phosphate ion carries a negative three formal charge and is the conjugate base of the hydrogen phosphate ion, HPO2−4, which is the conjugate base of H2PO−4, the dihydrogen phosphate ion, which in turn is the conjugate base of H3PO4, phosphoric acid. It is a hypervalent molecule (the phosphorus atom has 10 electrons in its valence shell). Phosphate is also an organophosphorus compound with the formula OP(OR)3. A phosphate salt forms when a positively-charged ion attaches to the negatively-charged oxygen atoms of the ion, forming an ionic compound. Many phosphates are not soluble in water at standard temperature and pressure. The sodium, potassium, rubidium, caesium and ammonium phosphates are all water soluble. Most other phosphates are only slightly soluble or are insoluble in water. As a rule, the hydrogen and dihydrogen phosphates are slightly more soluble than the corresponding phosphates. The pyrophosphates are mostly water soluble.
Apatite is a group of phosphate minerals, usually referring to hydroxyapatite, fluorapatite, chlorapatite and bromapatite, named for high concentrations of OH, F, Cl or Brions, respectively, in the crystal. The formula of the admixture of the four most common endmembers is written as Ca10(PO4)6(OH, F, Cl, Br)2, and the crystal unit cell formulae of the individual minerals are written as Ca10(PO4)6(OH)2, Ca10(PO4)6(F)2, Ca10(PO4)6(Cl)2 and Ca10(PO4)6(Br)2
Apatite is one of a few minerals that are produced and used by biological micro-environmental systems. Apatite has a Mohs Scale hardness of 5. Hydroxyapatite, also known as hydroxylapatite, is the major component of tooth enamel and bone mineral. A relatively rare form of apatite in which most of the OH groups are absent and containing many carbonate and acid phosphate substitutions is a large component of bone material.
Phosphine (IUPAC name: phosphane) is the compound with the chemical formula PH3. It is a colorless, flammable, toxic gas. Pure phosphine is odourless, but technical grade samples have a highly unpleasant odor like garlic or rotting fish, due to the presence of substituted phosphine and diphosphine (P2H4). Phosphines are also a group of organophosphorus compounds with the formula R3P (R = organic derivative). Organophosphines are important in catalysts where they complex to various metal ions; complexes derived from a chiral phosphine can catalyze reactions to give chiral products.
Occurrence
Due to its reactivity with air and many other oxygen-containing substances, phosphorus is not found free in nature but it is widely distributed in many different minerals.
Phosphate rock, which is partially made of apatite (an impure tri-calcium phosphate mineral), is an important commercial source of this element. About 50 percent of the global phosphorus reserves are in the Arab nations.[26] Large deposits of apatite are located in China, Russia, Morocco, Florida, Idaho, Tennessee, Utah, and elsewhere. Albright and Wilson in the United Kingdom and their Niagara Falls plant, for instance, were using phosphate rock in the 1890s and 1900s from Connetable, Tennessee and Florida; by 1950 they were using phosphate rock mainly from Tennessee and North Africa.[13] In the early 1990s Albright and Wilson's purified wet phosphoric acid business was being adversely affected by phosphate rock sales by China and the entry of their long-standing Moroccan phosphate suppliers into the purified wet phosphoric acid business.[27]
In 2007, at the current rate of consumption, the supply of phosphorus was estimated to run out in 345 years.[28] However, scientists are now claiming that a "Peak Phosphorus" will occur in 30 years and that "At current rates, reserves will be depleted in the next 50 to 100 years."[29]
The stability of the +5 oxidation state is illlustrated by the wide range of phosphate materials available in the earth.
Production
White phosphorus was first made commercially, for the match industry in the 19th century, by distilling off phosphorus vapour from precipitated phosphates, mixed with ground coal or charcoal, which was heated in an iron pot, in retort.[30] The precipitated phosphates were made from ground-up bones that had been de-greased and treated with strong acids. Carbon monoxide and other flammable gases produced during the reduction process were burnt off in a flare stack.
This process became obsolete when the submerged-arc furnace for phosphorus production was introduced to reduce phosphate rock.[31][32] Calcium phosphate (phosphate rock), mostly mined in Florida and North Africa, can be heated to 1,200–1,500 °C with sand, which is mostly SiO2, and coke (impure carbon) to produce vaporized tetraphosphorus, P4, (melting point 44.2 °C), which is subsequently condensed into a white powder under water to prevent oxidation. Even under water, white phosphorus is slowly converted to the more stable red phosphorus allotrope (melting point 597 °C). Both the white and red allotropes of phosphorus are insoluble in water.
The electric furnace method allowed production to increase to the point where phosphorus could be used in weapons of war.[7][13] In World War I it was used in incendiaries, smoke screens and tracer bullets.[13] A special incendiary bullet was developed to shoot at hydrogen-filled Zeppelins over Britain (hydrogen being highly inflammable if it can be ignited).[13] During World War II, Molotov cocktails of benzene and phosphorus were distributed in Britain to specially selected civilians within the British resistance operation, for defence; and phosphorus incendiary bombs were used in war on a large scale. Burning phosphorus is difficult to extinguish and if it splashes onto human skin it has horrific effects (see precautions below).[12]
Today phosphorus production is larger than ever. It is used as a precursor for various chemicals,[33] in particular the herbicide glyphosate sold under the brand name Roundup. Production of white phosphorus takes place at large facilities and it is transported heated in liquid form. Some major accidents have occurred during transportation, train derailments at Brownston, Nebraska and Miamisburg, Ohio led to large fires. The worst accident in recent times was an environmental one in 1968 when phosphorus spilled into the sea from a plant at Placentia Bay, Newfoundland.[34]
Applications
Widely used compounds
Use
Ca(H2PO4)2·H2O
Baking powder and fertilizers
CaHPO4·2H2O
Animal food additive, toothpowder
H3PO4
Manufacture of phosphate fertilizers
PCl3
Manufacture of POCl3 and pesticides
POCl3
Manufacturing plasticizer
P4S10
Manufacturing of additives and pesticides
Na5P3O10
Detergents
Phosphorus, being an essential plant nutrient, finds its major use as a constituent of fertilizers for agriculture and farm production in the form of concentrated phosphoric acids, which can consist of 70% to 75% P2O5. Global demand for fertilizers led to large increase in phosphate (PO43–) production in the second half of the 20th century. Due to the essential nature of phosphorus to living organisms, the low solubility of natural phosphorus-containing compounds, and the slow natural cycle of phosphorus, the agricultural industry is heavily reliant on fertilizers that contain phosphate, mostly in the form of superphosphate of lime. Superphosphate of lime is a mixture of two phosphate salts, calcium dihydrogen phosphate Ca(H2PO4)2 and calcium sulfate dihydrate CaSO4·2H2O produced by the reaction of sulfuric acid and water with calcium phosphate.

PRICES

$93/MT OR $0.04/IB

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com



No comments:

Post a Comment