Monday 9 October 2017

BORON ORE

Listing description
Boron ( /ˈbɔərɒn/) is the chemical element with atomic number 5 and the chemical symbol B. Boron is a metalloid. A low-abundance element in both the solar system and the Earth's crust, boron is concentrated on Earth by the water-solubility of its more common naturally-occurring compounds, the borate minerals. These are mined industrially as evaporate ores, such as borax and kernite.
Detailed description
Elemental boron is not found naturally. Industrially, very pure isolated boron is produced with difficulty, as boron tends to form refractory materials containing small amounts of carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder and crystalline boron is black, extremely hard (about 9.5 on Mohs' scale), and a poor conductor at room temperature. Elemental boron is used as a dopant in the semiconductor industry.
The major uses of boron compounds are in sodium perborate bleaches, and the borax component of fiberglass insulation. Boron compounds play specialized roles as high-strength lightweight structural and refractory materials. They are used in glasses and ceramics to give them resistance to thermal shock. Boron-containing reagents are used for the synthesis of organic compounds, and as an intermediate in the synthesis of pharmaceuticals that do not contain boron.
In biology, borates have low toxicity in mammals (similar to table salt), but much more so to many arthropods. A boron-containing natural antibiotic is known. Small amounts of boron compounds play a strengthening role in the cell walls of all plants, making boron a necessary element in soils. Experiments indicate a role for boron as an ultratrace element in animals, but the nature of its role in animal physiology is unknown.
History and etymology
The name boron originates from the Arabic word بورق buraq or the Persian word بوره burah;[7] which are names for the mineral borax.[8]

Boron compounds were known thousands of years ago. Borax was known from the deserts of western Tibet, where it received the name of tincal, derived from the Sanskrit. Borax glazes were used in China from AD300, and some tincal even reached the West, where the Arabic alchemist Jābir ibn Hayyān seems to mention it in 700. Marco Polo brought some glazes back to Italy in the 13th century. Agricola, around 1600, reports the use of borax as a flux in metallurgy. In 1777, boric acid was recognized in the hot springs (soffioni) near Florence, Italy, and became known as sal sedativum, with mainly medical uses. The rare mineral is called sassolite, which is found at Sasso, Italy. Sasso was the main source of European borax from 1827 to 1872, at which date American sources replaced it.[9][10]
Boron was not recognized as an element until it was isolated by Sir Humphry Davy[11] and by Joseph Louis Gay-Lussac and Louis Jacques Thénard[12] in 1808 through the reaction of boric acid and potassium. Davy called the element boracium.[13] Jöns Jakob Berzelius identified boron as an element in 1824. The first pure boron was arguably produced by the American chemist W. Weintraub in 1909.[14][15]
Market trend
Estimated global consumption of boron rose to a record 1.8 million tonnes of B2O3 in 2005, following a period of strong growth in demand from Asia, Europe and North America. Boron mining and refining capacities are considered to be adequate to meet expected levels of growth through the next decade.
The form in which boron is consumed has changed in recent years. The use of ores like colemanite has declined following concerns over arsenic content. Consumers have moved towards the use of refined borates and boric acid that have a lower pollutant content. The average cost of crystalline boron is $5/g.[53]
Increasing demand for boric acid has led a number of producers to invest in additional capacity. Eti Mine Company of Turkey opened a new boric acid plant with the production capacity of 100,000 tonnes per year at Emet in 2003. Rio Tinto Group increased the capacity of its boron plant from 260,000 tonnes per year in 2003 to 310,000 tonnes per year by May 2005, with plans to grow this to 366,000 tonnes per year in 2006. Chinese boron producers have been unable to meet rapidly growing demand for high quality borates. This has led to imports of sodium tetraborate (borax) growing by a hundredfold between 2000 and 2005 and boric acid imports increasing by 28% per year over the same period.[54][55]
The rise in global demand has been driven by high growth rates in fiberglass and borosilicate production. A rapid increase in the manufacture of reinforcement-grade fiberglass in Asia with a consequent increase in demand for borates has offset the development of boron-free reinforcement-grade fiberglass in Europe and the USA. The recent rises in energy prices may lead to greater use of insulation-grade fiberglass, with consequent growth in the boron consumption. Roskill Consulting Group forecasts that world demand for boron will grow by 3.4% per year to reach 21 million tonnes by 2010. The highest growth in demand is expected to be in Asia where demand could rise by an average 5.7% per year.[54][56]
Applications
Insulation
The main use of boron compounds is in the form of sodium tetraborate pentahydrate (Na2B4O7) for making insulating fiberglass and sodium perborate bleach.[57]
Detergents formulations and bleaching agents
Borax is used in laundry products, mainly as a precursor to bleaches. Specifically, sodium perborate serves as a source of active oxygen in many detergents, laundry detergents, cleaning products, and laundry bleaches. It is also present in some tooth bleaching formulas.[57]
Glass and ceramics
Nearly all boron ore extracted from the Earth is destined for refinement into boric acid and sodium tetraborate. In the United States, 70% of the boron is used for the production of glass and ceramics.[58] Borosilicate glass, which is typically 12–15% B2O3, 80% SiO2, and 2% Al2O3, has a low coefficient of thermal expansion giving it a good resistance to thermal shock. Duran and Pyrex are two major brand names for this glass.[59]
Boron filaments are high-strength, lightweight materials that are used chiefly for advanced aerospace structures as a component of composite materials, as well as limited production consumer and sporting goods such as golf clubs and fishing rods.[60][61] The fibers can be produced by chemical vapor deposition of boron on a tungsten filament.[43][62]
Boron fibers and sub-millimeter sized crystalline boron springs are produced by laser-assisted chemical vapor deposition. Translation of the focused laser beam allows to produce even complex helical structures. Such structures show good mechanical properties (elastic modulus 450 GPa, fracture strain 3.7 %, fracture stress 17 GPa) and can be applied as reinforcement of ceramics or in micromechanical systems.[63]
Shielding in nuclear reactors
Boron shielding is used as a control for nuclear reactors, taking advantage of its high cross-section for neutron capture.
Semiconductor industry
Boron is a useful dopant for such semiconductors as silicon, germanium, and silicon carbide. Having one fewer valence electron than the host atom, it donates a hole resulting in p-type conductivity. Traditional method of introducing boron into semiconductors is via its atomic diffusion at high temperatures. This process uses either solid (B2O3), liquid (BBr3), or gaseous boron sources (B2H6 or BF3). However, after 1970s, it was mostly replaced by ion implantation, which relies mostly on BF3 as a boron source. Boron trichloride gas is also an important chemical in semiconductor industry, however not for doping but rather for plasma etching of metals and their oxides. Triethylborane is also injected into vapor deposition reactors as a boron source. Examples are the plasma deposition of boron-containing hard carbon films, silicon nitride-boron nitride films, and for doping of diamond film with boron.

PRICE

$2758.79/KG OR $1253.99

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com





No comments:

Post a Comment