Tuesday, 7 November 2017

BLACK LIQUOR

Listing description
In industrial chemistryblack liquor is the waste product from the kraft process when digesting pulpwood into paper pulp removing ligninhemicelluloses and other extractives from the wood to free the cellulose fibers.
Detailed description

Usage

The black liquor contains more than half of the energy content of the wood fed into the digester of a kraft pulp mill.[5] It is normally concentrated to 65 - 80% by multi-effect evaporators and burned in a recovery boiler to produce energy and recover the cooking chemicals. The viscosity increases as the concentration goes up. At about 50 - 55% solids the salt solubility limit is reached.[6] Tall oil is an important byproduct separated from the black liquor with skimming before it goes to the evaporators or after the first evaporator stage.

Energy source for the pulp mill

Pulp mills have used black liquor as an energy source since at least the 1930s.[7] Most kraft pulp mills use recovery boilers to recover and burn much of the black liquor they produce, generating steam and recovering the cooking chemicals (sodium hydroxide and sodium sulfide used to separate lignin from the cellulose fibres needed for papermaking). This has helped paper mills reduce problems with water emissions, reduce their use of chemicals by recovery and reuse, and become nearly energy self-sufficient by producing, on average, 66 percent of their own electricity needs on-site.
In the United States, paper companies have consumed nearly all of the black liquor they produce since the 1990s.[7] As a result, the forest products industry has become one of the United States' leading generators of carbon-neutral renewable energy, producing approximately 28.5 terawatt hours of electricity annually.

Use as biofuel feedstock

New waste-to-energy methods to recover and utilize the energy in the black liquor have been developed. The use of black liquor gasificationhas the potential to achieve higher overall energy efficiency than the conventional recovery boiler while generating an energy-rich syngasfrom the liquor. The syngas can be burnt in a gas turbine combined cycle to produce electricity (usually called BLGCC for Black Liquor Gasification Combined Cycle; similar to IGCC) or converted through catalytic processes into chemicals or fuels such as methanoldimethyl ether (DME), or F-T diesel (usually called BLGMF for Black Liquor Gasification for Motor Fuels). This gasification technology is currently under operation in a 3 MW pilot plant at Chemrec’s[8] test facility in PiteåSweden. The DME synthesis step will be added in 2011 in the "BioDME" project, supported by the European Commission's Seventh Framework Programme (FP7) and the Swedish Energy Agency.[9]
Used for biofuels production the black liquor gasification route has been shown to have very high conversion efficiency and greenhouse gasreduction potential.[10]

Extraction of lignin

Where recovery boiler capacity is limited and a bottleneck in the pulp mill the lignin in the black liquor may be extraordinary and exported or used as fuel in the mill's lime kiln, thereby often replacing fossil based fuel with biofuel.

PRICE
$550/MT OR $0.55/KG OR $0.25/IB

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com






Thursday, 2 November 2017

AGATE[MOSS][MINERAL]

Listing description
Moss agate (also called mocha stone) is a semi-precious gemstone formed from silicon dioxide. It is a form of chalcedony which includes minerals of a green colour embedded in the stone, forming filaments and other patterns suggestive of moss.[1] The field is a clear or milky-white quartz, and the included minerals are mainly oxides of manganese or iron. It is not a true form of agate, as it lacks agate's defining feature of concentric banding. Moss agate is of the white variety with green inclusions that resemble moss. It occurs in many locations. The colors are formed due to trace amounts of metal present as an impurity, such as chrome or iron. The metals can make different colors depending on their valence (oxidation state).
Detailed description
Despite its name, moss agate does not contain organic matter and is usually formed from weathered volcanic rocks.
Montana moss agate is found in the alluvial gravels of the Yellowstone River and its tributaries between Sidney and Billings, Montana. It was originally formed in the Yellowstone National Park area of Wyoming as a result of volcanic activity. In Montana moss agate the red color is the result of iron oxide and the black color is the result of manganese oxide.

Price
$249475.6/kg or $113398/ib

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com





AGATE[NATURAL BLACK][MINERAL]

Listing description
Agate (pronounced /ˈæɡət/) is a microcrystalline variety of quartz (silica), chiefly chalcedony, characterised by its fineness of grain and brightness of color. Although agates may be found in various kinds of rock, they are classically associated with volcanic rocks but can be common in certain metamorphic rocks.[1]
Detailed description
Etymology and history
The stone was given its name by Theophrastus, a Greek philosopher and naturalist, who discovered the stone along the shore line of the river Achates (Greek: Ἀχάτης) sometime between the 4th and 3rd centuries BC.[2] Colorful agates and other chalcedonies were obtained over 3,000 years ago from the Achates River, now called Dirillo, in Sicily.[3]
Ancient use
Agate is one of the most common materials used in the art of hardstone carving, and has been recovered at a number of ancient sites, indicating its widespread use in the ancient world; for example, archaeological recovery at the Knossos site on Crete illustrates its role in Bronze Age Minoan culture.[4]
Formation and characteristics
Most agates occur as nodules in volcanic rocks or ancient lavas where they represent cavities originally produced by the disengagement of volatiles in the molten mass which were then filled, wholly or partially, by siliceous matter deposited in regular layers upon the walls. Such agates, when cut transversely, exhibit a succession of parallel lines, often of extreme tenuity, giving a banded appearance to the section. Such stones are known as banded agate, riband agate and striped agate.
In the formation of an ordinary agate, it is probable that waters containing silica in solution—derived, perhaps, from the decomposition of some of the silicates in the lava itself—percolated through the rock and deposited a siliceous coating on the interior of the vapour-vesicles. Variations in the character of the solution or in the conditions of deposition may cause a corresponding variation in the successive layers, so that bands of chalcedony often alternate with layers of crystalline quartz. Several vapour-vesicles may unite while the rock is still viscous, and thus form a large cavity which may become the home of an agate of exceptional size; thus a Brazilian geode lined with amethyst and weighing 35 tons was exhibited at the Düsseldorf Exhibition of 1902. Perhaps the most comprehensive review of agate chemistry is a recent text by Moxon cited below.
The first deposit on the wall of a cavity, forming the "skin" of the agate, is generally a dark greenish mineral substance, like celadonite, delessite or "green earth", which are rich in iron probably derived from the decomposition of the augite in the enclosing volcanic rock. This green silicate may give rise by alteration to a brown iron oxide (limonite), producing a rusty appearance on the outside of the agate-nodule. The outer surface of an agate, freed from its matrix, is often pitted and rough, apparently in consequence of the removal of the original coating. The first layer spread over the wall of the cavity has been called the "priming", and upon this base zeolitic minerals may be deposited.
Many agates are hollow, since deposition has not proceeded far enough to fill the cavity, and in such cases the last deposit commonly consists of quartz, often amethyst, having the apices of the crystals directed towards the free space so as to form a crystal-lined cavity, or geode.
On the disintegration of the matrix in which the agates are embedded, they are set free. The agates are extremely resistant to weathering and remain as nodules in the soil or are deposited as gravel in streams and shorelines.
Types of agate
A Mexican agate, showing only a single eye, has received the name of cyclops agate. Included matter of a green, golden, red, black or other color or combinations embedded in the chalcedony and disposed in filaments and other forms suggestive of vegetable growth, gives rise to dendritic or moss agate. Dendritic agates have fern like patterns in them formed due to the presence of manganese and iron oxides. Other types of included matter deposited during agate-building include sagenitic growths (radial mineral crystals) and chunks of entrapped detritus (such as sand, ash, or mud). Occasionally agate fills a void left by decomposed vegetative material such as a tree limb or root and is called limb cast agate due to its appearance.
Turritella agate is formed from silicified fossil Elimia tenera (erroneously considered Turritella) shells. E. tenera are spiral marine gastropods having elongated, spiral shells composed of many whorls. Similarly, coral, petrified wood and other organic remains or porous rocks can also become agatized. Agatized coral is often referred to as Petoskey stone or agate.
Greek agate is a name given to pale white to tan colored agate found in Sicily back to 400 B.C. The Greeks used it for making jewelry and beads. Today any agate of this color from Sicily, once an ancient Greek colony, is called Greek agate. Yet the stone had been around centuries before that and was known to both the Sumerians and the Egyptians, who used the gem for decoration and religious ceremony.
Another type of agate is Brazilian agate, which is found as sizable geodes of layered nodules. These occur in brownish tones interlayered with white and gray. Quartz forms within these nodules, creating a striking specimen when cut opposite the layered growth axis. It is often dyed in various colors for ornamental purposes.
Certain stones, when examined in thin sections by transmitted light, show a diffraction spectrum due to the extreme delicacy of the successive bands, whence they are termed rainbow agates. Often agate coexists with layers or masses of opal, jasper or crystalline quartz due to ambient variations during the formation process.
Other forms of agate include Lake Superior agate, carnelian agate (usually exhibiting reddish hues), Botswana agate, Ellensburg blue agate, blue lace agate, plume agates, tube agate (with visible flow channels), fortification agate (which exhibit little or no layered structure), fire agate (which seems to glow internally like an opal) and Mexican crazy-lace agate (which exhibits an often brightly colored, complex banded pattern) also called Rodeo Agate and Rosetta Stone depending on who owned the mine at the time.
Uses in industry and art
Industry uses agates chiefly to make ornaments such as pins, brooches, paper knives, inkstands, marbles and seals. Because of its hardness and ability to resist acids, agate is used to make mortars and pestles to crush and mix chemicals. Because of the high polish possible with agate it has been used for centuries for leather burnishing tools. Idar-Oberstein was one of the centers which made use of agate on an industrial scale. Where in the beginning locally found agates were used to make all types of objects for the European market, this became a globalized business around the turn of the 20th century: Idar-Oberstein imported large quantities of agate from Brazil, as ship's ballast. Making use of a variety of proprietary chemical processes, they produced colored beads that were sold around the globe.[5] Agates have long been used in arts and crafts. The sanctuary of a Presbyterian church in Yachats, Oregon, has six windows with panes made of agates collected from the local beaches.[6]

Chalcedony (pronounced /kælˈsɛdəni/) is a cryptocrystalline form of silica, composed of very fine intergrowths of the minerals quartz and moganite.[2] These are both silica minerals, but they differ in that quartz has a trigonal crystal structure, whilst moganite is monoclinic. Chalcedony's standard Chemical structure (Based on the chemical structure of quartz) is SiO2 (Silicon Dioxide).
Chalcedony has a waxy luster, and may be semitransparent or translucent. It can assume a wide range of colors, but those most commonly seen are white to gray, grayish-blue or a shade of brown ranging from pale to nearly black.
The name "chalcedony" comes from Latin calcedonius, the word used to translate the Greek word khalkedon, found only once, in the Book of Revelation; according to the OED a connection with the town of Chalcedon in Asia Minor is "very doubtful".[3] There is no reason to assume that the precious stone referred to by this name in the Bible is the same as what is now understood by the name.[4]


Varieties
Chalcedony occurs in a wide range of varieties. Many semi-precious gemstones are in fact forms of chalcedony. The more notable varieties of chalcedony are as follows:
Agate
Agate is a variety of chalcedony with multi-colored curved or angular banding. Fire agate shows iridescent phenomena on a brown background; iris agate shows exceptional iridescence when light (especially pinpointed light) is shone through the stone. Landscape agate is chalcedony with a number of different mineral impurities making the stone resemble landscapes.[5]
Carnelian
Carnelian (also spelled cornelian) is a clear-to-translucent reddish-brown variety of chalcedony. Its hue may vary from a pale orange, to an intense almost-black coloration. Similar to carnelian is sard, which is brown rather than red.
Chrysoprase
Chrysoprase (also spelled chrysophrase) is a green variety of chalcedony, which has been colored by nickel oxide. (The darker varieties of chrysoprase are also referred to as prase. However, the term prase is also used to describe green quartz, and to a certain extent is a color-descriptor, rather than a rigorously defined mineral variety.)
Moss agate
Moss agate (also known as tree agate or mocha stone) contains green filament-like inclusions, giving it the superficial appearance of moss or blue cheese. It is not a true form of agate, as it lacks agate's defining feature of concentric banding.
Onyx
Onyx is a variant of agate with black and white banding. Similarly, agate with brown, orange, red and white banding is known as sardonyx.
History
As early as the Bronze Age chalcedony was in use in the Mediterranean region; for example, on Minoan Crete at the Palace of Knossos, chalcedony seals have been recovered dating to circa 1800 BC.[6] People living along the Central Asian trade routes used various forms of chalcedony, including carnelian, to carve intaglios, ring bezels (the upper faceted portion of a gem projecting from the ring setting), and beads that show strong Graeco-Roman influence.

Price
$249475.6/kg or $113398/ib

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com